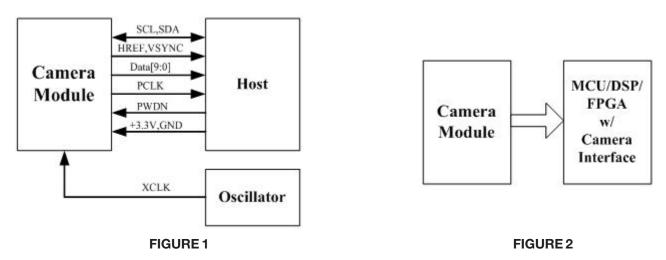
35594-MP 0.3M Pixel ArduCam OV7670

ALSO AVAILABLE: Acrylic Mounting Stand: 35499 HD

Information including Drawings, Schematics, Links and Code (Software) Supplied or Referenced in this Document is supplied by MPJA inc. as a service to our customers and accuracy or usefulness is not guaranteed nor is it an Endorsement of any particular part, supplier or manufacturer. Use of information and suitability for any application is at users own discretion and user assumes all risk.

> Information Subject to Change Without Notice All rights are retained by the respective Owners/Author(s)

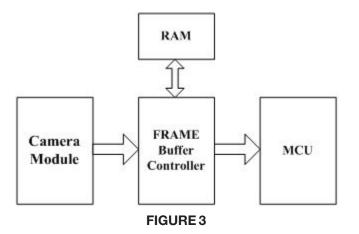
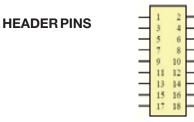


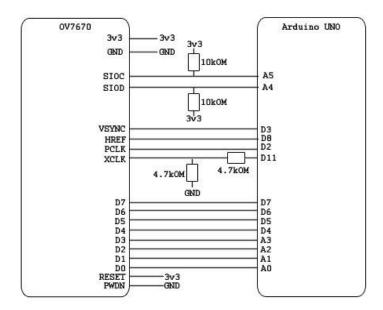
35594-MP 0.3MPixel ArduCam OV7670

GENERAL

Fig. 1 show a basic camera based system. The camera module is powered from a single +3.3V power supply. An external oscillator provide the clock source for camera module XCLK pin. With proper configuration to the camera internal registers via I2C bus, then the camera supply pixel clock (PCLK) and camera data (Data[9-0]) back to the host with synchronize signal like HREF and VSYNC.

Some host may have an integrated camera interface. The STM32F2 or STM32F4 series MCUs, or ARM9/11 have dedicated camera ports. DPS like TI TMS320DM series, as well as some FPGAs special logic for camera applications that the user can design. The typical connection between these system and camera module are shown in Fig. 2.


Fig. 3 showsbasics for the host that doesn't have a dedicate camera interface, additional hardware is needed. You need to buffer a entire frame before you can read them out when using a low speed MCUs. An example the ArduCAM shield has additional hardware that can be connected to the UNO or Mega board.user can take a photo or something like that easily.

35594-MP 0.3MPixel ArduCam OV7670

PIN	FUNCTION	DESCRIPTION	PIN	FUNCTION	DESCRIPTION
1	Vcc	3.3V Power	2	Gnd	Power Ground
3	SIOC/SCL	Serial Clock	4	SDATA/SIOO	Serial Data I/O
5	VSYNC	Frame Valid (Active High)	6	HREF	Data Valid (Active High)
7	PCLK	Pixel Clock from Sensor	8	XCLK	Master Clock to Sensor
9	D7	MSD Pixel Data Output	10	D6	Pixel Data Output
11	D5	Pixel Data Output	12	D4	Pixel Data Output
13	D3	Pixel Data Output	14	D2	Pixel Data Output
15	D1	Pixel Data Output	16	DO	LSD Pixel Data Output
17	RESET	Reset Sensor (Active Low)	18	PWDN	Power Down (Active high)

ARDUINO CONNECTIONS

USEFULL LINKS

https://www.instructables.com/id/OV7670-Arduino-Camera-Sensor-Module-Framecapture-T/ http://www.arducam.com/products/camera-breakout-board/0-3mp-ov7670/ https://github.com/ArduCAM/Arduino

http://www.arducam.com/downloads/ArduCAM_v3.3.1.zip

https://www.arduino.cc/en/main/software