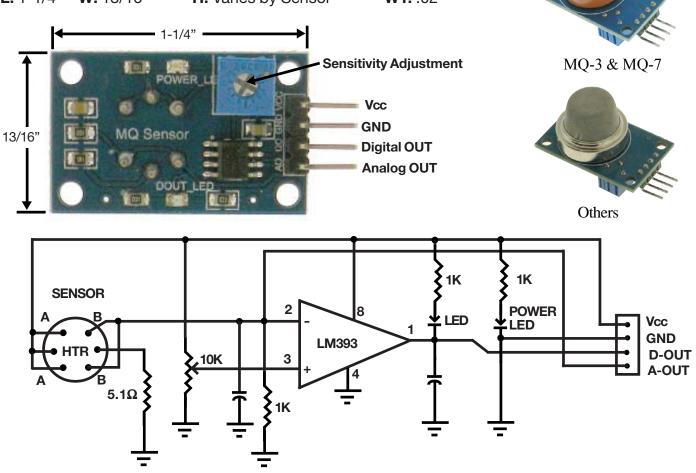
32507-MP

Research Kit of Gas Sensor Modules


Ideal for schools, research labs & experimenters. State of the art MQ-Series gas sensors coupled with a simple adjustable comparator circuit using a LM393 IC. Detects hazerdous/ combustable Vapors in the air. Simple 4 pin connections. Can be interfaced to an Arduino or other micro controllers. Freeware available through www.arduino.cc.en and other web sites.

Power: 5VDC

Outputs: TTL Compatible Digital & Sensor Direct Analog 4 Pin .1in. Pitch Header pins for Power & Output LEDs for Output and Power status indication. Response Time: <10Sec. Recovery Time: <30Sec. Enviromental: -10 to +45C, Humidity; <95%, <21% Oxygen L: 1-1/4" W: 13/16" H: Varies by Sensor WT: .02

Lab Kit Includes

MQ-2 Combustable Gas Sensor MQ-3 Ethanol Alcohol Sensor MQ-4 Methane Gas Sensor MQ-5 Natural Gas Sensor MQ-6 Propane-Butane Sensor MQ-7 Carbon Monoxide Sensor MQ-8 Hydrogen Gas Sensor MQ-9 Methane-Propane Sensor MQ-135 Air Quality Sensor

Information obtained from or supplied by Mpja.com or Marlin P. Jones and Associates inc. is supplied as a service to our customers and accuracy is not guaranteed nor is it definitive of any particular part or manufacturer. Use of information and suitability for any application is at users own discretion and user assumes all risk.

MARLIN P. JONES & ASSOC., INC. P.O. Box 530400 Lake Park, FI 33403 800-652-6733 FAX 561-844-8764 WWW.MP.JA.COM

TECHNICAL DATA

FEATURES

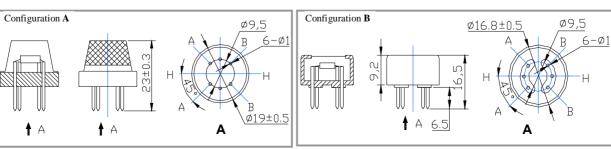
Wide detecting scope Stable and long life

Fast response and High sensitivity Simple drive circuit

APPLICATION

They are used in gas leakage detecting equipments in family and industry, are suitable for detecting of LPG, i-butane, propane, methane ,alcohol, Hydrogen, smoke.

SPECIFICATIONS A Standard work condition


A. 50	A. Standard work condition					
Symbol	Parameter name	Technical condition	Remarks			
Vc	Circuit voltage	5V±0.1	AC OR DC			
V _H	Heating voltage	5V±0.1	ACOR DC			
R _L	Load resistance	can adjust				
R _H	Heater resistance	$33 \Omega \pm 5\%$	Room Tem			
P _H	Heating consumption	less than 800mw				

B. E	Invironment condition		
Symbol	Parameter name	Technical condition	Remarks
Tao	Using Tem	-20°C-50°C	
Tas	Storage Tem	-20°C-70°C	7
R _H	Related humidity	less than 95% Rh	
O ₂	Oxygen concentration	21%(standard condition)Oxygen concentration can affect sensitivity	minimum value is over 2%

		concentration can arreet sensitivity	0101 270
C. Sensi	itivity characteristic		
Symbol	Parameter name	Technical parameter	Remarks
Rs	Sensing	$3K \Omega - 30K \Omega$	Detecting concentration
	Resistance	(1000ppm iso-butane)	scope:
			200ppm-5000ppm
α	Concentration		LPG and propane
(3000/1000)	Slope rate	≤ 0.6	300ppm-5000ppm
isobutane	_		butane
Standard	Temp: 20°C	±2°C Vc:5V±0.1	5000ppm-20000ppm
Detecting	Humidity: 65		methane
Condition	5		300ppm-5000ppm H ₂
Preheat time		Over 24 hour	100ppm-2000ppm
			Alcohol

			57 1
	Parts	Materials	
1	Gas sensing	SnO ₂	
	layer		
2	Electrode	Au	
3	Electrode line	Pt	3 3 A B B C or Vout
4	Heater coil	Ni-Cr alloy	A \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow Vout
5	Tubular ceramic	Al ₂ O ₃	
6	Anti-explosion	Stainless steel gauze	
	network	(SUS316 100-mesh)	
7	Clamp ring	Copper plating Ni	
8	Resin base	Bakelite	
9	Tube Pin	Copper plating Ni	
			20 mm 9 H Fig.2

Structure and configuration of MQ-2 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL2O3 ceramic tube, Tin Dioxide (SnO2) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-2 have 6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

Electric parameter measurement circuit is shown as Fig.2 E. Sensitivity characteristic curve

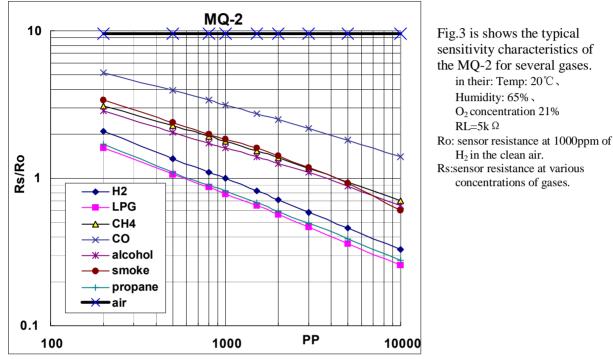
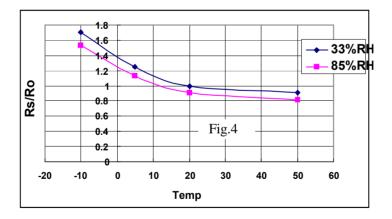
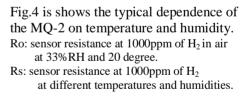




Fig.2 sensitivity characteristics of the MQ-2

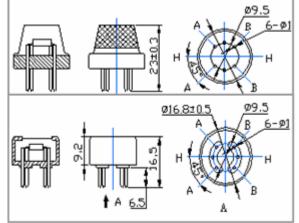
SENSITVITY ADJUSTMENT

Resistance value of MQ-2 is difference to various kinds and various concentration gases. So, When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 1000ppm liquified petroleum gas<LPG>,or 1000ppm iso-butane<i-C4H10>concentration in air and use value of Load resistance that(R_L) about 20 K Ω (5K Ω to 47 K Ω).

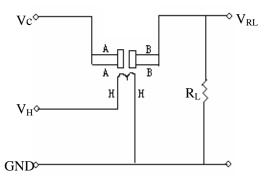
Semiconductor Sensor for Alcohol

Sensitive material of MQ-3 gas sensor is SnO_{2} , which with lower conductivity in clean air. When the target alcohol gas exist, The sensor's conductivity is more higher along with the gas concentration rising. Please use simple electrocircuit, Convert change of conductivity to correspond output signal of gas concentration.

MQ-3 gas sensor has high sensitity to Alcohol, and has good resistance to disturb of gasoline, smoke and vapor. The sensor could be used to detect alcohol with different concentration, it is with low cost and suitable for different application.

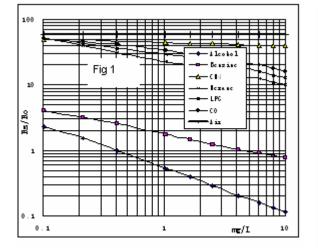

Character

- * Good sensitivity to alcohol gas
- * Long life and low cost
- * Simple drive circuit


Application

- * Vehicel alcohol detector
- * Portable alcohol detector

Configuration



Model No.			MQ-3	
S	ensor Type		Semiconductor	
Standa	rd Encapsulatio	n	Bakelite (Black Bakelite)	
De	etection Gas		Alcohol gas	
Co	oncentration		0.04-4mg/l alcohol	
	Loop Voltage	V_{c}	≤24V DC	
Circuit	Heater Voltage	V_H	5.0V±0.2V AC or DC	
Circuit	Load	R	Adjustable	
	Resistance	ΓL	Adjustable	
	Heater	Rн	$31\Omega \pm 3\Omega$ (Room Tem.)	
	Resistance	ΓΗ		
	Heater	Рн	≤900mW	
	consumption	гн	29001111	
Character	Sensing	R₅	2KΩ-20KΩ(in 0.4mg/l alcohol)	
	Resistance	n _s	2R12-20R12(III 0.4IIIg/I alcollol)	
	Sensitivity	S	Rs(in air)/Rs(0.4mg/L	
	Sensitivity	0	Alcohol)≥5	
	Slope	α	≤0.6(R _{300ppm} /R _{100ppm} Alcohol)	
	Tem. Humi	dity	20℃±2℃; 65%±5%RH	
Condition	Standard test of	airouit	Vc:5.0V±0.1V;	
Condition	Stanuaru test (ucuit	V _H : 5.0V±0.1V	
	Preheat time		Over 48 hours	

The above is basic test circuit of the sensor. The sensor need to be put 2 voltage, heater voltage (VH) and test voltage(VC). VH used to supply certified working temperature to the sensor, while VC used to detect voltage (VRL) on load resistance (RL) whom is in series with sensor. The sensor has light polarity, Vc need DC power. VC and VH could use same power circuit with precondition to assure performance of sensor. In order to make the sensor with better performance, suitable RL value is needed: Power of Sensitivity body(Ps): Ps=Vc²×Rs/(Rs+RL)²

<u>Technical Data</u> <u>Basic test loop</u>

Sensitivity Characteristics

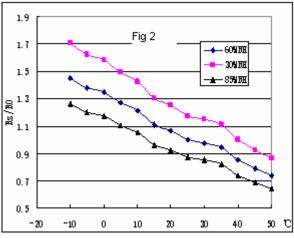
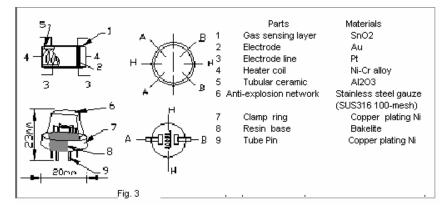



Fig.1 shows the typical sensitivity characteristics of the MQ-3, ordinate means resistance ratio of the sensor (Rs/Ro), abscissa is concentration of gases. Rs means resistance in different gases, Ro means resistance of sensor in 0. 4mg/l alcohol. All test are under standard test conditions.

P.S.: Sensitivity to smoke is ignite 10pcs cigarettes in 8m³ room, and the output equals to 0.1mg/l alcohol

Fig.2 shows the typical temperature and humidity characteristics. Ordinate means resistance ratio of the sensor (Rs/Ro), Rs means resistance of sensor in 0.4mg/l alcohol under different tem. and humidity. Ro means resistance of the sensor in environment of 0.4mg/l alcohol, 20°C/65%RH

Structure and configuration

Structure and configuration of MQ-3 gas sensor is shown as Fig. 3, sensor composed by micro AL2O3 ceramic tube, Tin Dioxide (SnO2) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-4 have 6 pin, 4 of them are used to fetch signals, and other 2 are used for providing heating current.

Notification

1 Following conditions must be prohibited

1.1 Exposed to organic silicon steam

Organic silicon steam cause sensors invalid, sensors must be avoid exposing to silicon bond, fixature, silicon latex, putty or plastic contain silicon environment

1.2 High Corrosive gas

If the sensors exposed to high concentration corrosive gas (such as H_2Sz , SO_x , CI_2 , HCl etc), it will not only result in corrosion of sensors structure, also it cause sincere sensitivity attenuation.

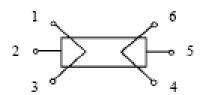
1.3 Alkali, Alkali metals salt, halogen pollution

The sensors performance will be changed badly if sensors be sprayed polluted by alkali metals salt especially brine, or be exposed to halogen such as fluorin.

1.4 Touch water

Sensitivity of the sensors will be reduced when spattered or dipped in water.

1.5 Freezing


Do avoid icing on sensor'surface, otherwise sensor would lose sensitivity.

1.6 Applied voltage higher

Applied voltage on sensor should not be higher than stipulated value, otherwise it cause down-line or heater damaged, and bring on sensors' sensitivity characteristic changed badly.

1.7 Voltage on wrong pins

For 6 pins sensor, if apply voltage on 1, 3 pins or 4, 6 pins, it will make lead broken, and without signal when apply on 2, 4 pins

2 Following conditions must be avoided

2.1 Water Condensation

Indoor conditions, slight water condensation will effect sensors performance lightly. However, if water condensation on sensors surface and keep a certain period, sensor' sensitivity will be decreased.

2.2 Used in high gas concentration

No matter the sensor is electrified or not, if long time placed in high gas concentration, if will affect sensors characteristic.

2.3 Long time storage

The sensors resistance produce reversible drift if it's stored for long time without electrify, this drift is related with storage conditions. Sensors should be stored in airproof without silicon gel bag with clean air. For the sensors with long time storage but no electrify, they need long aging time for stbility before using.

2.4 Long time exposed to adverse environment

No matter the sensors electrified or not, if exposed to adverse environment for long time, such as high humidity, high temperature, or high pollution etc, it will effect the sensors performance badly.

2.5 Vibration

Continual vibration will result in sensors down-lead response then repture. In transportation or assembling line, pneumatic screwdriver/ultrasonic welding machine can lead this vibration.

2.6 Concussion

If sensors meet strong concussion, it may lead its lead wire disconnected.

2.7 Usage

For sensor, handmade welding is optimal way. If use wave crest welding should meet the following conditions:

- 2.7.1 Soldering flux: Rosin soldering flux contains least chlorine
- 2.7.2 Speed: 1-2 Meter/ Minute
- 2.7.3 Warm-up temperature: 100±20°C
- 2.7.4 Welding temperature: 250±10℃
- 2.7.5 1 time pass wave crest solder machine

If disobey the above using terms, sensors sensitivity will be reduced.

TECHNICAL DATA

MQ-4 GAS SENSOR

FEATURES

* High sensitivity to CH₄, Natural gas.

* Small sensitivity to alcohol, smoke.

* Fast response . * Stable and long life

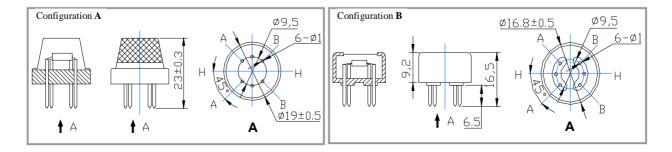
* Simple drive circuit

APPLICATION

They are used in gas leakage detecting equipments in family and industry, are suitable for detecting of CH_4 , Natural gas.LNG, avoid the noise of alcohol and cooking fumes and cigarette smoke.

SPECIFICATIONS

A. Standard work condition


Symbol	Parameter name	Technical condition	Remarks			
Vc	Circuit voltage	5V±0.1	AC OR DC			
V _H	Heating voltage	5V±0.1	ACOR DC			
PL	Load resistance	20K Ω				
R _H	Heater resistance	$33\Omega\pm5\%$	Room Tem			
P _H	Heating consumption	less than 750mw				
B. Env	B. Environment condition					

Symbol	Parameter name	Technical condition	Remarks
Tao	Using Tem	-10°C-50°C	
Tas	Storage Tem	-20°C-70°C	
R _H	Related humidity	less than 95% Rh	
O ₂	Oxygen concentration	21%(standard condition)Oxygen	minimum value is
		concentration can affect sensitivity	over 2%

C. Sensitivity characteristic

Symbol	Parameter name	Technical parameter	Ramark 2
Rs	Sensing Resistance	$10K \Omega - 60K \Omega$ (1000ppm CH ₄)	Detecting concentration scope: 200-10000ppm
α (1000ppm/ 5000ppm CH ₄)	Concentration slope rate	≤0.6	CH ₄ , natural gas
Standard detecting condition	Temp: 20℃±2℃ Humidity: 65%±5%	Vc:5V±0.1 Vh: 5V±0.1	
Preheat time	Over 24 h	nour	

			57 1		
	Parts	Materials		A B	• · · · · · · · · · · · · · · · · · · ·
1	Gas sensing layer	SnO ₂	4 - 4	н	
2	Electrode	Au			AC or B
3	Electrode line	Pt	3 3	B	AC or L 3 Vout
4	Heater coil	Ni-Cr alloy		A	$ \pm 0.1v $
5	Tubular ceramic	Al ₂ O ₃	6	н	
6	Anti-explosion network	Stainless steel gauze (SUS316 100-mesh)	WWECZ		
7	Clamp ring	Copper plating Ni		А ─ф1┋ӏ҄ <u>┣</u> ┣-В	
8	Resin base	Bakelite	8	Ĩ	• • •
9	Tube Pin	Copper plating Ni			
			20mm - 9	·H	Fig.2
			Fig. 1		

Structure and configuration of MQ-4 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-4 have 6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

Electric parameter measurement circuit is shown as Fig.2

E. Sensitivity characteristic curve

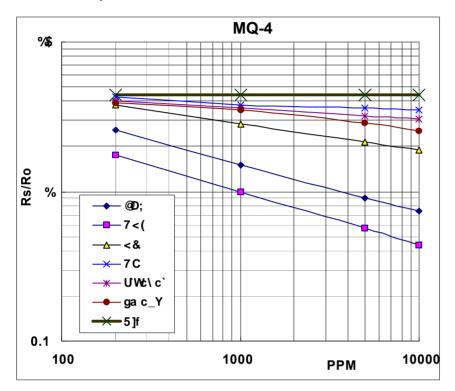
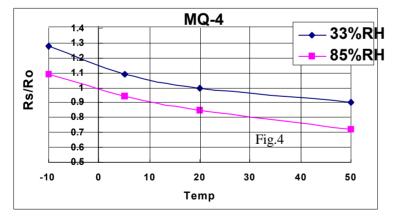



Fig.2 sensitivity characteristics of the MQ-4

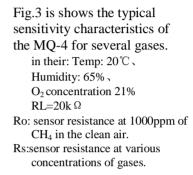


Fig.4 is shows the typical dependence of the MQ-4 on temperature and humidity. Ro: sensor resistance at 1000ppm of CH_4 in air at 33% RH and 20 degree.

Rs: sensor resistance at 1000ppm of CH_4 in air at different temperatures and humidities.

SENSITVITY ADJUSTMENT

Resistance value of MQ-4 is difference to various kinds and various concentration gases. So,When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 5000ppm of CH₄ concentration in air and use value of Load resistance (R_L) about 20K Ω (10K Ω to 47K Ω).

TECHNICAL DATA

MQ-5 GAS SENSOR

FEATURES

* High sensitivity to LPG, natural gas, town gas

* Small sensitivity to alcohol, smoke.

* Fast response . * Stable and long life

* Simple drive circuit

APPLICATION

They are used in gas leakage detecting equipments in family and industry, are suitable for detecting of LPG, natural gas, town gas, avoid the noise of alcohol and cooking fumes and cigarette smoke.

SPECIFICATIONS

A. Standard work condition

Symbol	Parameter name	Technical condition	Remarks
Vc	Circuit voltage	5V±0.1	AC OR DC
V _H	Heating voltage	5V±0.1	ACOR DC
P _L	Load resistance	20K Ω	
R _H	Heater resistance	31±10%	Room Tem
P _H	Heating consumption	less than 800mw	

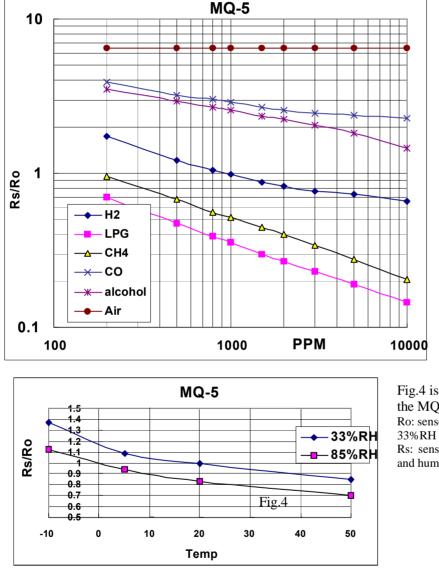
B. Environment condition

Symbol	Parameter name	Technical condition	Remarks
Tao	Using Tem	-10°C-50°C	
Tas	Storage Tem	-20°C-70°C	
R _H	Related humidity	less than 95% Rh	
O ₂	Oxygen concentration	21%(standard condition)Oxygen	minimum value is
		concentration can affect sensitivity	over 2%

C. Sensitivity characteristic

Symbol	Parameter name	Technical parameter	Remarks
	Sensing Resistance	$10 \mathrm{K} \Omega$ - $60 \mathrm{K} \Omega$	Detecting concentration
Rs		(5000ppm methane)	scope:
			200-10000ppm
α			LPG,LNG
(5000ppm/1000	Concentration slope rate	≤ 0.6	Natural gas,
ppm CH ₄)			iso-butane, propane
Standard	Temp: $20^{\circ}C \pm 2^{\circ}C$	Vc:5V±0.1	Town gas
detecting	Humidity: 65%±5%	Vh: 5V±0.1	e
condition	-		
Preheat time	Over 24 h	nour	

			5, ,
	Parts	Materials	
1	Gas sensing	SnO ₂	
	layer		
2	Electrode	Au	
3	Electrode line	Pt	3 3 A B AC or DC SV Vout
4	Heater coil	Ni-Cr alloy	A \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow Vout
5	Tubular ceramic	Al ₂ O ₃	
6	Anti-explosion	Stainless steel gauze	
	network	(SUS316 100-mesh)	
7	Clamp ring	Copper plating Ni	
8	Resin base	Bakelite	
9	Tube Pin	Copper plating Ni	
			20 mm 9 H Fig.2
			Fig. 1



Structure and configuration of MQ-5 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed byStructure and configuration of MQ-5 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed bymicro AL₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-5 have 6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

Electric parameter measurement circuit is shown as Fig.2

E. Sensitivity characteristic curve

Fig.2 sensitivity characteristics of the MQ-5

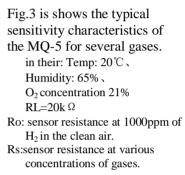


Fig.4 is shows the typical dependence of the MQ-5 on temperature and humidity. Ro: sensor resistance at 1000ppm of H_2 in air at 33%RH and 20 degree.

Rs: sensor resistance at different temperatures and humidities.

SENSITVITY ADJUSTMENT

Resistance value of MQ-5 is difference to various kinds and various concentration gases. So, When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 1000ppm H₂ or LPG concentration in air and use value of Load resistance (R_L) about 20 K Ω (10K Ω to 47K Ω).

TECHNICAL DATA

MQ-6 GAS SENSOR

FEATURES

* High sensitivity to LPG, iso-butane, propane

* Small sensitivity to alcohol, smoke.

* Fast response . * Stable and long life

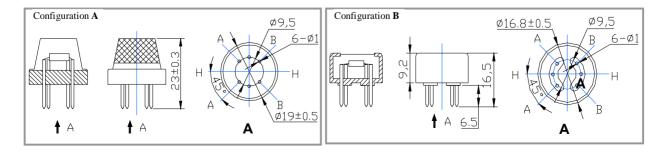
* Simple drive circuit

APPLICATION

They are used in gas leakage detecting equipments in family and industry, are suitable for detecting of LPG, iso-butane, propane, LNG, avoid the noise of alcohol and cooking fumes and cigarette smoke.

SPECIFICATIONS

A. Standard work condition

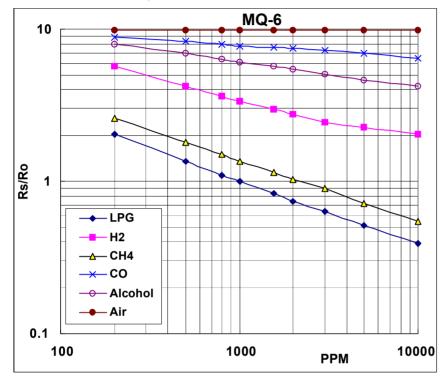

Symbol	Parameter name	Technical condition	Remarks		
Vc	Circuit voltage	5V±0.1	AC OR DC		
$V_{\rm H}$	Heating voltage	5V±0.1	ACOR DC		
P _L	Load resistance	20K Ω			
R _H	Heater resistance	$33 \Omega \pm 5\%$	Room Tem		
P _H	Heating consumption	less than 750mw			
B. Env	B. Environment condition				

Symbol	Parameter name	Technical condition	Remarks
Tao	Using Tem	-10°C-50°C	
Tas	Storage Tem	-20°C-70°C	
R _H	Related humidity	less than 95% Rh	
O ₂	Oxygen concentration	21%(standard condition)Oxygen	minimum value is
		concentration can affect sensitivity	over 2%

C. Sensitivity characteristic

Symbol	Parameter name	Technical parameter	Remarks
Rs	Sensing Resistance	$10 \mathrm{K} \Omega$ - $60 \mathrm{K} \Omega$	Detecting concentration
		(1000ppm LPG)	scope:
			200-10000ppm
α			LPG, iso-butane,
(1000ppm/	Concentration slope rate	≤ 0.6	propane,
4000ppm LPG)			LNG
Standard	Temp: $20^{\circ}C \pm 2^{\circ}C$	Vc:5V±0.1	
detecting	Humidity: 65%±5%	Vh: 5V±0.1	
condition			
Preheat time	Over 24 h	nour	

			57 1		
	Parts	Materials		A L B	
1	Gas sensing layer	SnO ₂	4 - 4	н	
2	Electrode	Au			AC or B
3	Electrode line	Pt	3 3	B	AC or C 3 Vout
4	Heater coil	Ni-Cr alloy		AID	
5	Tubular ceramic	Al ₂ O ₃	6	Н	$ \rightarrow $
6	Anti-explosion	Stainless steel gauze		1 L	H F RL
	network	(SUS316 100-mesh)			
7	Clamp ring	Copper plating Ni		А ──Ңӏ҄Ѯ҄ӏӇ҅─-В	
8	Resin base	Bakelite	8		
9	Tube Pin	Copper plating Ni			
			20mm -9	'H	Fig.2
			Fig. 1		



Structure and configuration of MQ-6 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-6 have 6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

Electric parameter measurement circuit is shown as Fig.2

E. Sensitivity characteristic curve

Fig.2 sensitivity characteristics of the MQ-6

MQ-6

20

Temp

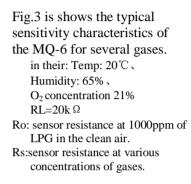


Fig.4 is shows the typical dependence of the MQ-6 on temperature and humidity. Ro: sensor resistance at 1000ppm of LPG in air at 33% RH and 20 degree.

Rs: sensor resistance at 1000ppm of LPG in air at different temperatures and humidities.

SENSITVITY ADJUSTMENT

0

10

1.3

17

1.1

0.9 0.8 0.7

0.6

-10

Rs/Ro

Resistance value of MQ-6 is difference to various kinds and various concentration gases. So, When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 1000ppm of LPG concentration in air and use value of Load resistance (R_I) about 20K Ω (10K Ω to 47K Ω).

-33%RH

-85%RH

50

When accurately measuring, the proper alarm point for the gas detector should be determined after considering the temperature and humidity influence.

40

Fig 4

30

MQ-7 GAS SENSOR

FEATURES

- * High sensitivity to carbon monoxide
- * Stable and long life

APPLICATION

They are used in gas detecting equipment for carbon monoxide (CO) in family and

industry or car.

SPECIFICATIONS

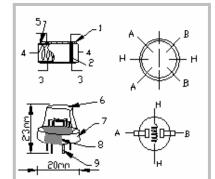
A.	Standard	work	condition

Symbol	Parameter name	Technical condition	Remark
Vc	circuit voltage	5V±0.1	Ac or Dc
Vн (H)	Heating voltage (high)	5V±0.1	Ac or Dc
VH(L)	Heating voltage (low)	1.4V±0.1	Ac or Dc
RL	Load resistance	Can adjust	
Rн	Heating resistance	33Ω ±5%	Room temperature
TH (H)	Heating time (high)	60 ± 1 seconds	
TH (L)	Heating time (low)	90±1 seconds	
PH	Heating consumption	About 350mW	

B. Environment conditions

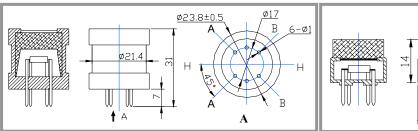
Symbol	Parameters	Technical conditions	Remark
Tao	Using temperature	-20 °C+50 °C	
Tas	Storage temperature	-20°C+50°C	Advice using scope
RH	Relative humidity	Less than 95%RH	
O2	Oxygen concentration	21%(stand condition)	Minimum value is over 2%
		the oxygen concentration can	
		affect the sensitivity	
		characteristic	

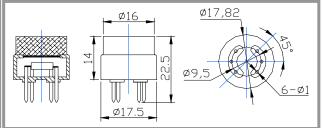
C. Sensitivity characteristic

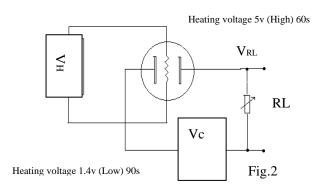

symbol	Parameters	Technical parameters	Remark	
Rs	Surface resistance		In 100ppm	
	Of sensitive body	2-20k	Carbon Monoxide	
a (300/100ppm)	Concentration slope rate	Less than 0.5	Rs (300ppm)/Rs(100ppm)	
Standard working	Temperature $-20^{\circ} C \pm 2^{\circ} C$ relative humidity $65\% \pm 5\%$ RL: $10K\Omega \pm 5\%$			
condition	Vc:5V±0.1V VH:5	V±0.1V VH:1.4V±0.	.1V	
Preheat time	No less than 48 hours	Detecting range: 20ppm-2000ppm carb	oon monoxide	

D. Structure and configuration, basic measuring circuit

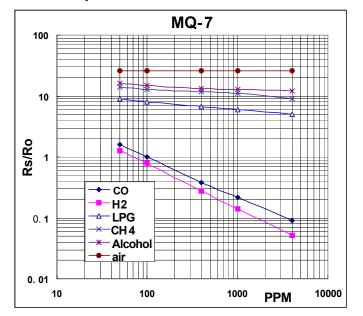
Structure and configuration of MQ-7 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-7 have 6 pins ,4 of them are used to fetch signals, and other 2 are used for providing heating current.




6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.



	Parts	Materials
1	Gas sensing	SnO ₂
	layer	
2	Electrode	Au
3	Electrode line	Pt
4	Heater coil	Ni-Cr alloy
5	Tubular ceramic	Al ₂ O ₃
6	Anti-explosion	Stainless steel gauze
	network	(SUS316 100-mesh)
7	Clamp ring	Copper plating Ni
8	Resin base	Bakelite
9	Tube Pin	Copper plating Ni



Standard circuit:

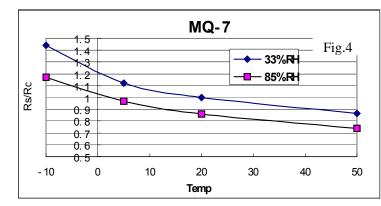
As shown in Fig 2, standard measuring circuit of MQ-7 sensitive components consists of 2 parts. one is heating circuit having time control function (the high voltage and the low voltage work circularly). The second is the signal output circuit, it can accurately respond changes of surface resistance of the sensor.

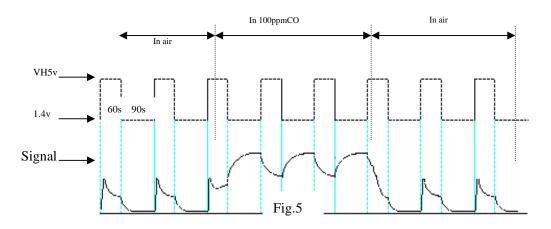
Electric parameter measurement circuit is shown as Fig.2

E. Sensitivity characteristic curve

Fig.3 sensitivity characteristics of the MQ-7

Fig.3 is shows the typical sensitivity characteristics of the MQ-7 for several gases. in their: Temp: 20 °C 、 Humidity: 65% 、 O₂ concentration 21% RL=10kΩ
Ro: sensor resistance at 100ppm CO in the clean air.
Rs: sensor resistance at various concentrations of gases.




Fig.4 is shows the typical dependence of the MQ-7 on temperature and humidity. Ro: sensor resistance at 100ppm CO in air at 33%RH and 20degree. Rs: sensor resistance at 100ppm CO at different temperatures and humidities.

OPERATION PRINCIPLE

. The surface resistance of the sensor Rs is obtained through effected voltage signal output of the load resistance RL which series-wound. The relationship between them is described:

Rs RL = (Vc-VRL) / VRL

Fig. 5 shows alterable situation of RL signal output measured by using Fig. 2 circuit output

signal when the sensor is shifted from clean air to carbon monoxide (CO), output signal measurement is made within one or two complete heating period (2.5 minute from high voltage to low voltage).

Sensitive layer of MQ-7 gas sensitive components is made of SnO₂ with stability, So, it has excellent long term stability. Its service life can reach 5 years under using condition.

SENSITVITY ADJUSTMENT

Resistance value of MQ-7 is difference to various kinds and various concentration gases. So, When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 200ppm CO in air and use value of Load resistance that(R_L) about 10 K Ω (5K Ω to 47 K Ω).

When accurately measuring, the proper alarm point for the gas detector should be determined after considering the temperature and humidity influence. The sensitivity adjusting program:

- a. Connect the sensor to the application circuit.
- b. Turn on the power, keep preheating through electricity over 48 hours.
- c. Adjust the load resistance RL until you get a signal value which is respond to a certain carbon monoxide concentration at the end point of 90 seconds.
- d. Adjust the another load resistance RL until you get a signal value which is respond to a CO concentration at the end point of 60 seconds .

TECHNICAL DATA

MQ-8 GAS SENSOR

FEATURES

- * High sensitivity to Hydrogen (H₂)
- * Small sensitivity to alcohol, LPG,cooking fumes
- * Stable and long life

APPLICATION

They are used in gas leakage detecting equipments in family and industry, are suitable for detecting of Hydrogen (H_2) , avoid the noise of alcohol and cooking fumes, LPG,CO.

SPECIFICATIONS

A. Standard work condition

Symbol	Parameter name	Technical condition	Remarks
Vc	Circuit voltage	5V±0.1	AC OR DC
V _H	Heating voltage	5V±0.1	ACOR DC
PL	Load resistance	$10 \mathrm{K} \Omega$	
R _H	Heater resistance	31±5%	Room Tem
P _H	Heating consumption	less than800mW	

B. Environment condition

Symbol	Parameter name	Technical condition	Remarks
Tao	Using Tem	-10°C-50°C	
Tas	Storage Tem	-20°C-70°C	
R _H	Related humidity	less than 95%Rh	
O ₂	Oxygen concentration	21%(standard condition)Oxygen	minimum value is
		concentration can affect sensitivity	over 2%

C. Sensitivity characteristic

Symbol	Parameter name	Technical parameter	Ramark 2
Rs	Sensing Resistance	10K Ω - 60K Ω (1000ppm H ₂)	Detecting concentration scope: 100-10000ppm
α (1000ppm/ 500ppmH ₂)	Concentration slope rate	≤0.6	Hydrogen (H ₂)
Standard	Temp: $20^{\circ}C \pm 2^{\circ}C$	Vc:5V±0.1	
detecting condition	Humidity: 65%±5%	Vh: 5V±0.1	
Preheat time	Over 24 h	iour	

			57 1	
	Parts	Materials		•
1	Gas sensing	SnO ₂		
	layer			
2	Electrode	Au		β A or B
3	Electrode line	Pt	3 3 B AC or DC 5v	
4	Heater coil	Ni-Cr alloy	$\begin{array}{c c} A & D & D \\ \pm 0.1 \vee \end{array}$	Vout
5	Tubular ceramic	Al ₂ O ₃		
6	Anti-explosion	Stainless steel gauze		
	network	(SUS316 100-mesh)		
7	Clamp ring	Copper plating Ni		
8	Resin base	Bakelite		
9	Tube Pin	Copper plating Ni		
			≥ 20mm ≥ 9 'H	Fig.2
			F' 1	
			Fig. 1	

Structure and configuration of MQ-8 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-8 have 6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

Electric parameter measurement circuit is shown as Fig.2 E. Sensitivity characteristic curve

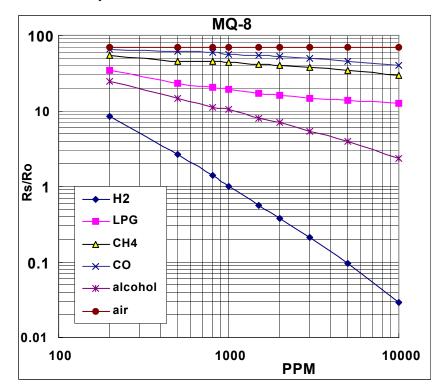
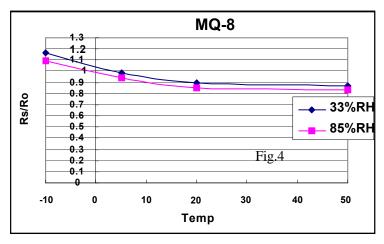



Fig.2 sensitivity characteristics of the MQ-8

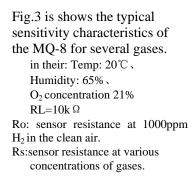


Fig.4 is shows the typical dependence of the MQ-8 on temperature and humidity.
Ro: sensor resistance at 1000ppm of H₂ in air at 33%RH and 20 degree.
Rs: sensor resistance at 1000ppm of H₂ in air

at different temperatures and humidities.

SENSITVITY ADJUSTMENT

Resistance value of MQ-8 is difference to various kinds and various concentration gases. So, When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 1000ppm H₂ concentration in air and use value of Load resistance (R_L) about 10 K Ω (5K Ω to 33 K Ω).

TECHNICAL DATA MQ-9 GAS SENSOR

FEATURES

* High sensitivity to carbon monoxide and CH₄, LPG.

* Stable and long life

APPLICATION

They are used in gas detecting equipment for carbon monoxide and CH_4 , LPG in family

and industry or car.

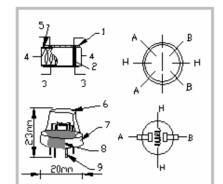
SPECIFICATIONS

A. Standard work condition

A. Standard work condition				
Symbol	Parameter name	technical condition	Remark	
Vc	circuit voltage	5V±0.1	AC or DC	
VH (H)	Heating voltage (high)	5V±0.1	AC or DC	
VH(L)	Heating voltage (low)	1.4V±0.1	AC or DC	
RL	Load resistance	Can adjust		
Rн	Heating resistance	33 Ω ±5%	Room temperature	
TH (H)	Heating time (high)	$60\pm$ 1 seconds		
TH(L)	Heating time (low)	$90\pm$ 1 seconds		
Ps	Heating consumption	Less than 340mw		

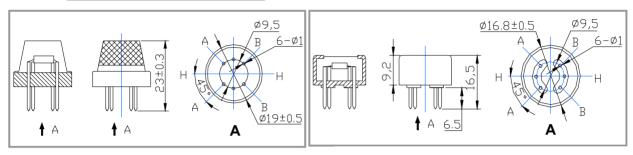
b. Environment conditions

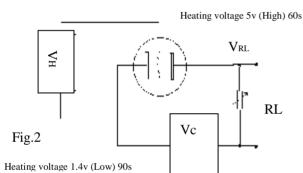
Symbol	Parameters	Technical conditions	Remark
Тао	Using temperature	-20℃- 50 ℃	
Tas	Storage temperature	-20℃-50℃	Advice using scope
RH	Relative humidity	Less than 95% RH	
O2	Oxygen concentration	21% (stand condition)	Minimum value is over 2%
		the oxygen concentration can	
		affect the sensitivity	
		characteristic	

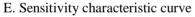

c. Sensitivity characteristic

symbol	Parameters	Technical parameters	Remark
Rs	Surface resistance		In 100ppm
	Of sensitive body	2-20k	Carbon Monoxide
a (300/100ppm)	Concentration slope rate	Less than 0.5	Rs (300ppm)/Rs(100ppm)
Standard working	Temperature $-20^{\circ}C \pm 2^{\circ}C$	relative humidity 65% ±	25% RL:10K Ω ±5%
condition	5V±0.1V VH:1.4V±0	.1V	
Preheat time	No less than 48 hours Detecting range:20ppm-2000ppm c 500ppm-10000ppm		2000ppm carbon monoxide -10000ppm CH ₄
	11 11		m-10000ppm LPG

D. Structure and configuration, basic measuring circuit


Structure and configuration of MQ-9 gas sensor is shown as Fig. 1 (Configuration A or B), sensor composed by micro AL₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-9 have


6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.


	Parts	Materials
1	Gas sensing	SnO ₂
	layer	
2	Electrode	Au
3	Electrode line	Pt
4	Heater coil	Ni-Cr alloy
5	Tubular ceramic	Al ₂ O ₃
6	Anti-explosion	Stainless steel gauze
	network	(SUS316 100-mesh)
7	Clamp ring	Copper plating Ni
8	Resin base	Bakelite
9	Tube Pin	Copper plating Ni

Electric parameter measurement circuit is shown as Fig.2

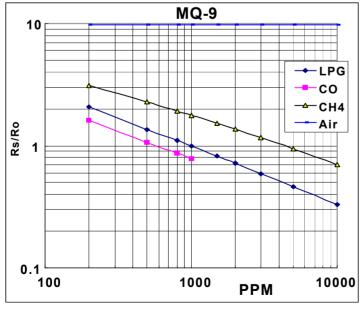


Fig.3 is shows the typical sensitivity characteristics of the MQ-9 for several gases. in their: Temp: $20^{\circ}C_{\times}$ Humidity: $65\%_{\times}$ O_2 concentration 21% RL= $10k \Omega$ Ro: sensor resistance at 1000ppm LPG in the clean air. Rs: sensor resistance at various concentrations of gases.

Fig.3 sensitivity characteristics of the MQ-9

Standard circuit:

As shown in Fig 2, standard measuring circuit of MQ-9 sensitive components consists of 2 parts. one is heating circuit having time control function (the high voltage and the low voltage work circularly). The second is the signal output circuit, it can accurately respond changes of surface resistance of the sensor.

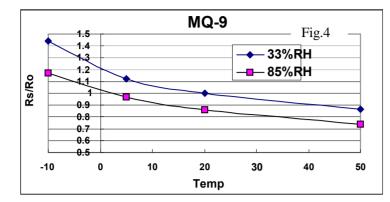


Fig.4 is shows the typical dependence of the MQ-9 on temperature and humidity. Ro: sensor resistance at 1000ppm LPG in air at 33% RH and 20degree. Rs: sensor resistance at 1000ppm LPG at different temperatures and humidities.

OPERATION PRINCIPLE

. The surface resistance of the sensor Rs is obtained through effected voltage signal output of the load resistance RL which series-wound. The relationship between them is described:

Rs RL = (Vc - VRL) / VRL

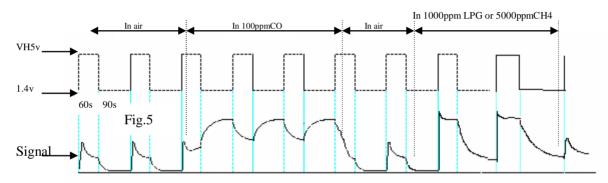


Fig. 5 shows alterable situation of RL signal output measured by using Fig. 2 circuit output signal when the sensor is shifted from clean air to carbon monoxide (CO) or CH_4 , output signal measurement is made within one or two complete heating period (2.5 minute from high voltage to low voltage).

Sensitive layer of MQ-9 gas sensitive components is made of SnO₂ with stability, So, it has excellent long term stability. Its service life can reach 5 years under using condition. SENSITVITY ADJUSTMENT

Resistance value of MQ-9 is difference to various kinds and various concentration gases. So, When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 200ppm and 5000ppm CH₄ or 1000ppm LPG concentration in air and use value of Load resistance that(R_L) about 20 K Ω (10K Ω to 47 K Ω).

When accurately measuring, the proper alarm point for the gas detector should be determined after considering the temperature and humidity influence.

The sensitivity adjusting program:

- a. Connect the sensor to the application circuit.
- b. Turn on the power, keep time of preheating through electricity is over 48 hours.
- c. Adjust the load resistance RL until you get a signal value which is respond to a certain carbon monoxide concentration at the end point of 90 seconds.
- d. Adjust the another load resistance RL until you get a signal value which is respond to a CH_4 or LPG concentration at the end point of 60 seconds .

TECHNICAL DATA

MQ-135 GAS SENSOR

FEATURES

Wide detecting scope Stable and long life

Fast response and High sensitivity Simple drive circuit

APPLICATION

They are used in air quality control equipments for buildings/offices, are suitable for detecting of NH3,NOx, alcohol, Benzene, smoke,CO₂,etc.

SPECIFICATIONS

A. Standard work condition

Symbol	Parameter name	Technical condition	Remarks
Vc	Circuit voltage	5V±0.1	AC or DC
V _H	Heating voltage	5V±0.1	AC or DC
R _L	Load resistance	adjustable	
R _H	Heater resistance	$33 \Omega \pm 5\%$	Room Temp.
P _H	Heating consumption	less than 800mw	

B. Environment condition

Symbol	Parameter name	Technical condition	Remarks
Tao	Using Tem	-10°C-45°C	
Tas	Storage Tem	-20°C-70°C	
R _H	Related humidity	less than 95% Rh	
O ₂	Oxygen concentration	21%(standard condition)Oxygen concentration can affect sensitivity	minimum value is over 2%

C. Sensitivity characteristic

Symbol	Parameter name	Technical parameter		Ramark 2
Rs	Sensing Resistance	$30K \Omega - 200K \Omega$	(100ppm NH ₃)	
α (200/50) NH ₃	Concentration Slope rate	≤0.65		Detecting concentration scope: 10ppm-300ppm NH ₃
Standard Detecting Condition	Temp: 20℃±2℃ Vc:5V±0.1 Humidity: 65%±5% Vh: 5V±0.1			10ppm-1000ppm Benzene 10ppm-300ppm Alcohol
Preheat time	Over 24 hour			

D. Structure and configuration, basic measuring circuit

			57 1		
	Parts	Materials		A B	
1	Gas sensing layer	SnO ₂	4 -4	н	
2	Electrode	Au			AC or B
3	Electrode line	Pt	3 3	B	AC or DC 5v ₹ 3 P
4	Heater coil	Ni-Cr alloy		A	$ \frac{100}{\pm 0.1 v} $
5	Tubular ceramic	Al ₂ O ₃	6	н	
6	Anti-explosion network	Stainless steel gauze (SUS316 100-mesh)			
7	Clamp ring	Copper plating Ni		А — ф1┋Ҧ— в	
8	Resin base	Bakelite	8	Ĩ	• • •
9	Tube Pin	Copper plating Ni	20mm 9	I _H	Fig.2
					118.2

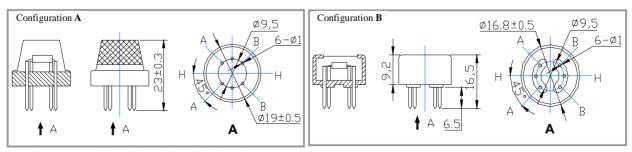


Fig. 1

Structure and configuration of MQ-135 gas sensor is shown as Fig. 1 (Configuration **A or B**), sensor composed by micro AL₂O₃ ceramic tube, Tin Dioxide (SnO₂) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of sensitive components. The enveloped MQ-135 have 6 pin ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

Electric parameter measurement circuit is shown as Fig.2 E. Sensitivity characteristic curve

MQ-135 10 AIR CO2 со Alcohol NH4 Toluene Rs/Ro Acetone 0.1 PPM 100 10 1000 1.8 1.6 33%RH 14 85%RH 1.2 Rs/Ro ი 8 0.6 Fig.4 0.4 0.2 -20 -10 0 10 20 30 40 50 60 Temp

Fig.2 sensitivity characteristics of the MQ-135

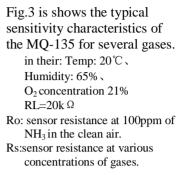


Fig.4 is shows the typical dependence of the MQ-135 on temperature and humidity.
Ro: sensor resistance at 100ppm of NH₃ in air at 33% RH and 20 degree.
Rs: sensor resistance at 100ppm of NH₃ at different temperatures and humidities.

SENSITVITY ADJUSTMENT

Resistance value of MQ-135 is difference to various kinds and various concentration gases. So,When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 100ppm NH₃ or 50ppm Alcohol concentration in air and use value of Load resistancethat(R_L) about 20 K Ω (10K Ω to 47 K Ω).