## Linear Actuator Series 20000, Ø 20 mm (3/4")

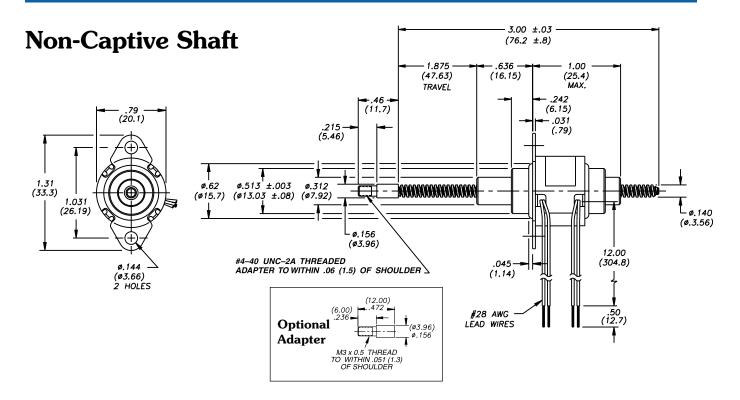
HAYDON INCORPORATED • 800.243.2715 (203.756.7441) • WWW.HSI-INC.COM



Engineered with unique features reliable long life and performance.

#### **Salient Characteristics**

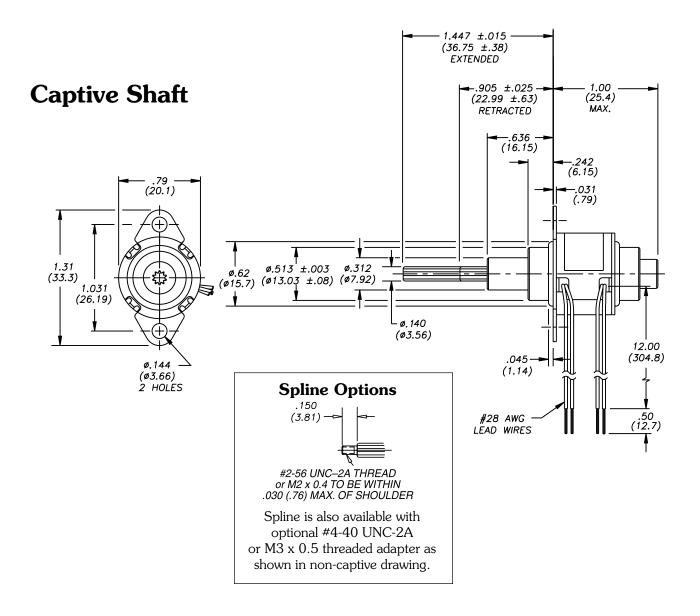
| Ø 20 mm (.79") motor  |             |                        |        |  |  |
|-----------------------|-------------|------------------------|--------|--|--|
| Wiring                |             | Bipolar                |        |  |  |
| Part No.              | Captive     | 2054X-V                |        |  |  |
| I all NO.             | Non-captive | 2084X-V                |        |  |  |
| Step angle            |             | 15°                    |        |  |  |
| Operating voltage     |             | 5 VDC                  | 12 VDC |  |  |
| Current/phase         |             | 270 mA                 | 113 mA |  |  |
| Resistance/phase      |             | 18.5 Ω                 | 106 Ω  |  |  |
| Inductance/phase      |             | 5.5 mH                 | 32 mH  |  |  |
| Power consumption     |             | 2.7 W                  |        |  |  |
| Rotor inertia         |             | 0.5 gcm <sup>2</sup>   |        |  |  |
| Temperature rise      |             | 135°F Rise (75°C Rise) |        |  |  |
| Weight                |             | 1 oz (28 g)            |        |  |  |
| Insulation resistance |             | 20 MΩ                  |        |  |  |


| <b>Linear Tra</b><br>15° Ste | Order<br>Code |      |
|------------------------------|---------------|------|
| inches                       | mm            | I.D. |
| 0.001                        | 0.0254        | 1    |
| 0.002                        | 0.051         | 2    |
| 0.004                        | 0.102         | 4    |

Special drive considerations may be necessary when leaving shaft fully extended or fully retracted.

NOTE: See page 5 to identify product code information before placing order.

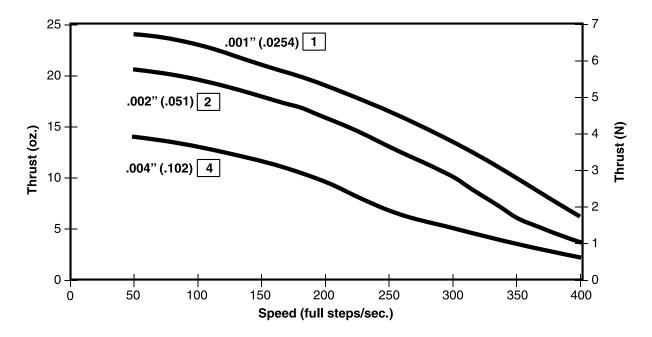
For Wiring and Stepping Sequence see page 6.


## Linear Series 20000 Dimensional Drawings



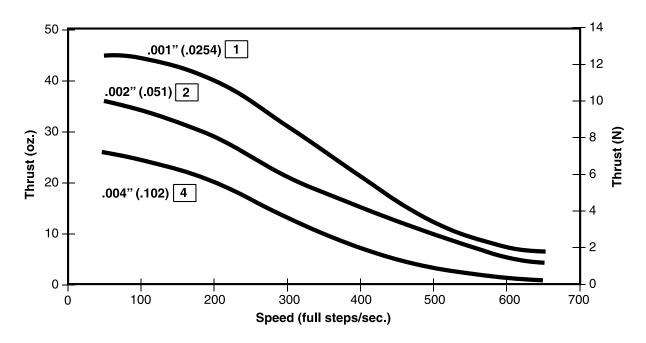
Page 1 of 6 HAYDON STEPPER MOTORS / 20000 SERIES: Ø 20mm, [3/4-in.] (CAT. REF. PG. 23)

## **Linear Series 20000 Dimensional Drawings**


HAYDON INCORPORATED • 800.243.2715 (203.756.7441) • WWW.HSI-INC.COM



## Linear Series 20000 Step Rate vs. Thrust Curves


HAYDON INCORPORATED • 800.243.2715 (203.756.7441) • WWW.HSI-INC.COM

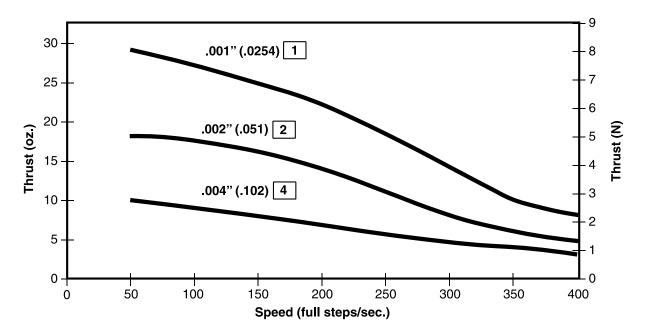
### Bipolar • L/R Drive • 100% Duty Cycle



#### Bipolar • L/R Drive • 25% Duty Cycle

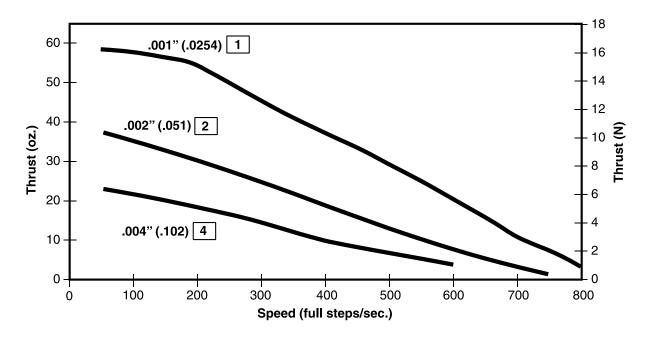
25% duty cycle is obtained by a special winding or by running a standard motor at double the rated voltage.




**NOTE:** Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

Page 3 of 6 HAYDON STEPPER MOTORS / 20000 SERIES: Ø 20mm, [3/4-in.] (CAT. REF. PG. 25)

Linear Series 20000 Step Rate vs. Thrust Curves


HAYDON INCORPORATED • 800.243.2715 (203.756.7441) • WWW.HSI-INC.COM

#### Bipolar • Chopper Drive • 100% Duty Cycle



#### **Bipolar** • Chopper Drive • 25% Duty Cycle

25% duty cycle is obtained by running a standard motor at double the rated current.

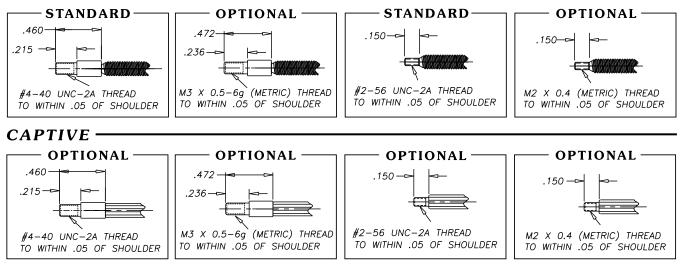


NOTE: All chopper drive curves were created with a 5 Volt motor and a 40 Volt power supply.

Ramping can increase the performance of a motor either by increasing the top speed or getting a heavier load accelerated up to speed faster. Also, deceleration can be used to stop the motor without overshoot.

## **Linear Actuators Step Movement Selector Chart**

| Travel<br>Per<br>Step<br>Code<br>Letters<br>or<br>Digits | Per Step  |             | <b>15000</b><br><b>Series</b> <sup>1</sup><br>Ø 15mm<br>(0.59")<br>Screw Ø | (0.79")<br>Screw Ø | <b>26000</b><br><b>Series</b><br>Ø 26mm<br>(1.0")<br>Screw Ø | <b>36000</b><br><b>Series</b><br>Ø 36mm<br>(1.4")<br>Screw Ø | (1.8")<br>Screw Ø  | Series<br>Ø 20mm<br>(.079")<br>Screw Ø | <b>Z26000</b><br>Series<br>Ø 26mm<br>(1.0")<br>Screw Ø |
|----------------------------------------------------------|-----------|-------------|----------------------------------------------------------------------------|--------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------|----------------------------------------|--------------------------------------------------------|
|                                                          | Inches    | Millimeters | 5mm<br>(0.197")                                                            | 3.56mm<br>(0.140") | 3.56mm<br>(0.140")                                           | 3.56mm<br>(0.140")                                           | 5.54mm<br>(0.218") | 3.30mm<br>(0.130")                     | 3.30mm<br>(0.130")                                     |
| 7                                                        | 0.000125* | 0.0032*     |                                                                            |                    |                                                              | ●                                                            |                    |                                        |                                                        |
| 9                                                        | 0.00025*  | 0.0064*     |                                                                            |                    | •                                                            | •                                                            |                    |                                        |                                                        |
| 3                                                        | 0.0005    | 0.013       |                                                                            |                    | •                                                            |                                                              |                    |                                        | ●                                                      |
| W                                                        | 0.00079   | 0.02        | •                                                                          |                    |                                                              |                                                              |                    |                                        |                                                        |
| 1                                                        | 0.001     | 0.0254      |                                                                            | •                  | •                                                            |                                                              | •                  | •                                      | •                                                      |
| AS                                                       | 0.00164   | 0.04166     |                                                                            |                    |                                                              |                                                              |                    |                                        | •                                                      |
| 2                                                        | 0.002     | 0.051       |                                                                            | ●                  | •                                                            |                                                              | •                  | •                                      |                                                        |
| 4                                                        | 0.004     | 0.102       |                                                                            | •                  | •                                                            | •                                                            | •                  | •                                      |                                                        |
| 8                                                        | 0.008     | 0.203       |                                                                            |                    |                                                              |                                                              | •                  |                                        |                                                        |
| G                                                        | 0.016     | 0.406       |                                                                            |                    |                                                              |                                                              |                    |                                        |                                                        |

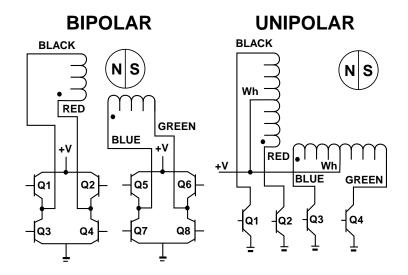

HAYDON INCORPORATED • 800.243.2715 (203.756.7441) • WWW.HSI-INC.COM

\* Specialty and high resolution step movements

<sup>1</sup> The 15000 Series is currently available with captive screw only

# Optional Threaded End Forms for all Z-Series, 20000, 26000 and 36000 Series Motors.

#### NON-CAPTIVE




Customized ends and adapters are available for most actuators upon request.

Page 5 of 6 HAYDON STEPPER MOTORS / STEP SELECTOR (CAT. REF. PG. 17)

## **Linear Actuators: Wiring Diagram**

HAYDON INCORPORATED • 800.243.2715 (203.756.7441) • WWW.HSI-INC.COM



## **Linear Actuators: Stepping Sequence**

| Y      | Bipolar  | Q2-Q3 | Q1-Q4 | Q6-Q7 | Q5-Q8 |         |
|--------|----------|-------|-------|-------|-------|---------|
|        | Unipolar | Q1    | Q2    | Q3    | Q4    |         |
|        | Step     |       |       |       |       |         |
| Xt     | 1        | ON    | OFF   | ON    | OFF   | act     |
| Extend | 2        | OFF   | ON    | ON    | OFF   | Retract |
| u<br>∎ | 3        | OFF   | ON    | OFF   | ON    | Ř       |
| Y      | 4        | ON    | OFF   | OFF   | ON    |         |
|        | 5        | ON    | OFF   | ON    | OFF   |         |
|        |          |       |       |       |       |         |

Note: Half stepping is accomplished by inserting an off state between transitioning phases.