
Rev. 0.9 10/12 Copyright © 2012 by Silicon Laboratories AN197

AN197

SERIAL COMMUNICATIONS GUIDE FOR THE CP210X

1. Introduction

This document is intended for developers creating products based on the CP210x USB to UART Bridge Controller.
It provides information about serial communications and how to obtain the port number for a specific CP210x
device. Code samples are provided for opening, closing, configuring, reading, and writing to a COM port. Also
included is a GetPortNum function that can be copied and used to determine the port number on a CP210x device
by using its Vendor ID (VID), Product ID (PID), and serial number.

2. Opening a COM Port

Before configuring and using a COM port to send and receive data, it must first be opened. When a COM port is
opened, a handle is returned by the CreateFile() function that is used from then on for all communication. Here is
example code that opens COM3:

HANDLE hMasterCOM = CreateFile("\\\\.\\COM3",
GENERIC_READ | GENERIC_WRITE,
0,
0,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
0);

The first parameter in the CreateFile() function is a string that contains the COM port number to use. This string will
always be of the form "\\\\.\\COMX" where X is the COM port number to use. The second parameter contains flags
describing access, which will be GENERIC_READ and GENERIC_WRITE for the example in this document, and
allows both read and write access. Parameters three and four must always be 0, and the flag in parameter five
must always be OPEN_EXISTING when using CreateFile() for COM applications. The sixth parameter should
always contain the FILE_ATTRIBUTE_NORMAL flag. In addition, the FILE_FLAG_OVERLAPPED is an optional
flag that is used when working with asynchronous transfers (this option is used for the example in this document).
If overlapped mode is used, functions that read and write to the COM port must specify an OVERLAPPED
structure identifying the file pointer, which is demonstrated in section 3.1. and section 3.2. (more information on
overlapped I/O is located at http://msdn.microsoft.com/library/en-us/dnfiles/html/msdn_serial.asp?frame=true -
serial_topic4). The seventh, and last, parameter must always be 0.

If this function returns successfully, then a handle to the COM port will be assigned to the HANDLE variable. If the
function fails, then INVALID_HANDLE_VALUE will be returned. Upon return check the handle and if it's valid, then
prepare the COM port for data transmission.

Relevant Devices
This application note applies to the following devices:
CP2101, CP2102, CP2103, CP2104, CP2105, CP2108

http://msdn.microsoft.com/library/en-us/dnfiles/html/msdn_serial.asp?frame=true - serial_topic4
http://msdn.microsoft.com/library/en-us/dnfiles/html/msdn_serial.asp?frame=true - serial_topic4

AN197

2 Rev. 0.9

3. Preparing an Open COM Port for Data Transmission
Once a handle is successfully assigned to a COM port several steps must be taken to set it up. The COM port must
first be purged and its initial state should be retrieved. Then the COM port's new settings can be assigned and set
up by a device control block (DCB) structure (more information is provided on the DCB structure in section 3.3. and
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/devio/base/dcb_str.asp).

3.1. Purging the COM Port
First the COM port should be purged to clear any existing data going to or from the COM port using the
PurgeComm() function:

PurgeComm(hMasterCOM, PURGE_TXABORT | PURGE_RXABORT | PURGE_TXCLEAR | PURGE_RXCLEAR);

The first parameter in the PurgeComm() function is a handle to the open COM port that will be purged. The second
parameter contains flags that further describe what actions should be taken. All four flags, PURGE_TXABORT,
PURGE_RXABORT, PURGE_TXCLEAR, and PURGE_RXCLEAR should always be used. The first two flags
terminate overlapped write and read operations, and the last two flags clear the output and input buffers.

If this function returns successfully then a non-zero value is returned. If the function fails, then it returns 0. Upon
return, check the return value; if it is non-zero, continue to set up the COM port (more information on the
PurgeComm() function is located at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/devio/base/
purgecomm.asp).

3.2. Saving the COM Port's Original State
Since the COM port settings can be modified to meet different needs, it is good practice to obtain the COM port's
current state and store it so that when the COM port is closed, the COM port can be restored back to its original
state. This can be done using the GetCommState() function:

DCB dcbMasterInitState;

GetCommState(hMasterCOM, &dcbMasterInitState);

The first parameter in the GetCommState() function is a handle to the open COM port to obtain settings from. The
second parameter is an address to a DCB structure to store the COM port's settings. This DCB structure should
also be used as the initial state when specifying new settings for the COM port (see section 3.3.).

If this function returns successfully then a non-zero value is returned. If the function fails, then it returns 0. Upon
return, check the return value; if it is non-zero, continue to set up the COM port (more information on the
GetCommState() function is located at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/devio/base/
getcommstate.asp).

3.3. Setting up a DCB Structure to Set the New COM State
All of a COM port's settings are stored in a DCB structure. In section 3.2. a DCB structure was retrieved that
contained the initial settings of the COM port by using the GetCommState() function. To change a COM port's
settings, a DCB structure must be created and filled out with the desired settings. Then the SetCommState()
function can be used to activate those settings:

DCB dcbMaster = dcbMasterInitState;

dcbMaster.BaudRate= 57600;
dcbMaster.Parity= NOPARITY;
dcbMaster.ByteSize= 8;
dcbMaster.StopBits= ONESTOPBIT;

SetCommState(hMasterCOM, &dcbMaster);

Delay(60);

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/devio/base/dcb_str.asp

AN197

Rev. 0.9 3

Here a new DCB structure dcbMaster has been initialized to dcbMasterInitState, which are the current settings of
the COM port. After it has been initialized to the current settings, new settings can be assigned.

3.3.1. Baud Rate

The baud rate property is set to 57600 bps, but can be set to any of the baud rates supported by the CP210x. (See
the current data sheet for the list of supported baud rates for the CP210x.)

3.3.2. Parity

The parity is set to NOPARITY, however it can also be set to ODDPARITY, EVENPARITY, SPACEPARITY, and
MARKPARITY if supported by the CP210x. (See the current data sheet for the list of supported parities for the
CP210x.)

3.3.3. Byte Size

The byte size is set to 8, so there are 8 data bits in every byte of data sent. This can also be set to 5, 6, or 7 if
supported by the CP210x. (see the data sheet for the list of supported byte sizes for the CP210x.)

3.3.4. Stop Bits

The stop bits are set to ONESTOPBIT, but could also be set to TWOSTOPBITS or ONE5STOPBITS (1.5). (See the
current data sheet for the list of supported stop bits for the CP210x.) All combinations of data and stop bits can be
used except for the combination of 5 data bits with 2 stop bits and the combination of 6, 7, or 8 data bits with 1.5
stop bits.

After each of these settings is set to the desired value, the SetCommState() function can be called to set up the
COM port. The first parameter in the SetCommState() function is a handle to the open COM port to change the
settings on. The second parameter is an address to a DCB structure containing the COM port's new settings 2
(more information on serial settings using DCB structures is located at http://msdn.microsoft.com/library/en-us/
dnfiles/html/msdn_serial.asp?frame=true - serial_topic6).

If this function returns successfully, a non-zero value is returned. If the function fails, it returns 0. Upon return,
check the return value; if it is non-zero, delay for 60 ms to allow time for the settings to change and then continue to
set up the COM port. This delay is not required; however, a conservative time of 60 ms is good practice to ensure
that the settings are changed before any other operations take place.

http://msdn.microsoft.com/library/en-us/dnfiles/html/msdn_serial.asp?frame=true - serial_topic6
http://msdn.microsoft.com/library/en-us/dnfiles/html/msdn_serial.asp?frame=true - serial_topic6
http://msdn.microsoft.com/library/en-us/dnfiles/html/msdn_serial.asp?frame=true - serial_topic6

AN197

4 Rev. 0.9

4. Transmitting Data Across the COM Port

Once the COM port is successfully opened and configured, data can be written or read.

4.1. Writing Data
There are several things that need to happen in a write, so it is a good idea to create a function for the writes to be
called whenever a write must occur. Here is an example of a write function:

bool WriteData(HANDLE handle, BYTE* data, DWORD length, DWORD* dwWritten)
{

bool success= false;
OVERLAPPED o= {0};

o.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

if (!WriteFile(handle, (LPCVOID)data, length, dwWritten, &o))
{

if (GetLastError() == ERROR_IO_PENDING)
if (WaitForSingleObject(o.hEvent, INFINITE) == WAIT_OBJECT_0)

if (GetOverlappedResult(handle, &o, dwWritten, FALSE))
success = true;

}
else

success = true;

if (*dwWritten != length)
success = false;

CloseHandle(o.hEvent);

return success;
}

The parameters passed in to this function are the handle to an open COM port, a pointer to an array of bytes that
will be written, the number if bytes that are in the array, and a pointer to a variable to store and return the number of
bytes written.

Two local variables are declared at the beginning of the function: a bool named success that will store the success
of the write (this is initialized to false, and only set true when the write succeeds) and an overlapped object o which
is passed to the WriteFile() function and alerts if the transfer is complete or not (this is always initialized to {0}
before the hEvent is assigned). Creating an event with the CreateEvent(NULL, FALSE, FALSE, NULL) function
sets the hEvent property of o to prepare it to be passed to the WriteFile() function (more information on
CreateEvent() is located at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/
createevent.asp).

Next, the WriteFile() function is called with the handle, data, length of the data, and variable to store the amount of
data that was written (more information on WriteFile() is located at http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/fileio/base/writefile.asp). If this function returns successfully, a non-zero value is
returned. If the function fails, it returns 0. The if statement will determine if the write succeeded and if it did not, the
last error is retrieved to see if there really was an error or the write just wasn't finished. If ERROR_IO_PENDING is
returned then object o is then waited on until either the write finishes or fails (if something other than
ERROR_IO_PENDING is returned by the GetLastError() function, then there is the possibility of surprise removal;
see “8. Application Design Notes” for comments on surprise removal). When the wait is over, the result is obtained
so that the amount of bytes written is updated. The success variable will then be assigned with the appropriate
value, and the handle of o.hEvent is closed. Then the amount of bytes written is checked, and finally the function
returns the success of the write, which will be true if the write successfully completed.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createevent.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createevent.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createevent.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createevent.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/writefile.asp

AN197

Rev. 0.9 5

4.2. Reading Data
There are several things that need to happen in a read, so it is a good idea to create a function for the reads to be
called whenever a read must occur. Here is an example of a read function:

bool ReadData(HANDLE handle, BYTE* data, DWORD length, DWORD* dwRead, UINT timeout)
{

bool success= false;
OVERLAPPEDo= {0};

o.hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

if (!ReadFile(handle, data, length, dwRead, &o))
{

if (GetLastError() == ERROR_IO_PENDING)
if (WaitForSingleObject(o.hEvent, timeout) == WAIT_OBJECT_0)

success = true;
GetOverlappedResult(handle, &o, dwRead, FALSE);

}
else

success = true;

CloseHandle(o.hEvent);

return success;
}

The parameters passed in to this function are the handle to an open COM port, a pointer to an array of bytes that
will be read, the number if bytes that are in the array, a pointer to a variable to store and return the number of bytes
read, and a timeout value.

Two local variables are declared at the beginning of the function: a bool named success that will store the success
of the read (this is initialized to false, and only set true when the read succeeds), and an overlapped object o which
is passed to the ReadFile() function and alerts if the transfer is complete or not (this is always initialized to {0}
before the hEvent is assigned). Creating an event with the CreateEvent(NULL, FALSE, FALSE, NULL) function
sets the hEvent property of o to prepare it to be passed to the ReadFile() function (more information on
CreateEvent() is located at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/
createevent.asp).

Next, the ReadFile() function is called with the handle, data, length of the data, and variable to store the amount of
data that was written (more information on the ReadFile() function is located at http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/fileio/base/readfile.asp). If this function returns successfully then a non-zero value is
returned. If the function fails, then it will return 0. The if statement will determine if the write succeeded and if it
didn't, the last error is retrieved to see if there really was an error or the write just wasn't finished. If
ERROR_IO_PENDING is returned then object o is then waited on until either the write finishes or fails (if
something other than ERROR_IO_PENDING is returned by the GetLastError() function, then there is the possibility
of surprise removal; see section 8. "Application Design Notes" for comments on surprise removal). When the wait
is over, the result is obtained so that the amount of bytes read is updated. The success variable will then be
assigned with the appropriate value, and the handle of o.hEvent is closed. Finally, the function returns the success
of the read, which will be true if the read successfully completed.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/createevent.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/readfile.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/readfile.asp

AN197

6 Rev. 0.9

5. Closing the COM Port

After all communication is finished, then the COM port should then be closed. First, the COM port should be set
back to its initial state, and then the handle to the COM port should be closed and set to an invalid handle. Example
code is shown below:

SetCommState(hMasterCOM, &dcbMasterInitState);

Delay(60);

CloseHandle(hMasterCOM);
hMasterCOM = INVALID_HANDLE_VALUE;

The SetCommState() function works the same as described in "3.3. Setting up a DCB Structure to Set the New
COM State" on page 2. A delay of 60 ms is used to make sure the settings have time to be set. Finally the device is
closed using the CloseHandle() function. This function just takes in the handle of the COM port. After this function
is called, it is important to set the variable to an INVALID_HANDLE_VALUE.

6. Sample program to Demonstrate Serial Communications

Included in the AN197SW.zip is a directory named "CP210xSerialTest" which contains the source code and
executables for a Visual Studio project that makes use of all the serial communication functions described in
section 3., section 4., and section 5. The program is a basic dialog based application that accepts two COM port
numbers, and then will send a test array of 64 bytes of data back and forth between them.

7. Discovering CP210x COM Port

To use the described functionality with a COM port, the number of the COM port needs to be known. In order to find
out the COM port number of a CP210x device, the VID, PID, and serial number are used to lookup a registry key.
This key is different between Windows XP/2000/Server 2003/Vista and Windows 98. Here are the keys that will
need to be looked up:

WinXP/2000/Server 2003/Vista/7 (Driver Version 5.0 and higher):

HKLM\System\CurrentControlSet\Enum\USB\Vid_xxxx&Pid_yyyy\zzzz\Device Parameters\PortName

WinXP/2000/Server 2003/Vista/7 (Driver Version 4.40 and lower):

HKLM\System\CurrentControlSet\Enum\USB\Vid_xxxx&Pid_yyyy&Mi_00\zzzz_00\Device Parameters\PortName

(where xxxx is the VID, yyyy is the PID, and zzzz is the serial number)

AN197

Rev. 0.9 7

7.1. Windows XP/2000/Server 2003/Vista/7
To find the port number in Windows XP/2000/Server 2003/Vista/7, the corresponding key listed above needs to be
opened. This is done using several registry calls using Windows API functions. The function is passed the VID,
PID, and serial number, and the return value is either the port number that the CP210x is located on, or a –1 if
there is a failure. The function below will find the CP210x port number in Windows XP/2000/Server 2003/Vista/7
(this function can be copied straight into application code that needs to discover the COM port number):

int GetPortNum(WORD vid, WORD pid, char* ser, BYTE ifc)
{

//Variables used for Registry access
HKEY tmpKey, tmpSubKey, tmpPortKey;
CString portKeyString;
DWORD valtype;
wchar_t* portString;
wchar_t* parentIdString;
DWORD length = 100;
portString = new wchar_t[101];
parentIdString = new wchar_t[101];
wchar_t tmpPortString[10];

//Set portnum to -1, so if there is an error we will
//know by returning a negative port value
int portNum = -1;

// Open keys to get to the key where the port number is located. This key is:
if (ERROR_SUCCESS == RegOpenKeyEx(HKEY_LOCAL_MACHINE, L"SYSTEM\\CurrentControlSet\\", 0,

KEY_READ, &tmpKey))
{

if (ERROR_SUCCESS == RegOpenKey(tmpKey, L"Enum\\USB\\", &tmpSubKey))
{

//Loop through and replace spaces for WinXP2000Vista
int i = 0;
while (ser[i] != '\0')
{

if (ser[i] == 0x20)
ser[i] = '_';

i++;
}

//The portkey string should look like this
//"Vid_XXXX&Pid_XXXX\\XXXX" where the XXXX's are Vid, Pid and serial string
portKeyString = L"Vid_";
_itow_s((int)vid, tmpPortString, 10, 16);
portKeyString += tmpPortString;
portKeyString += L"&Pid_";
_itow_s((int)pid, tmpPortString, 10, 16);
portKeyString += tmpPortString;
portKeyString += L"\\";
portKeyString += ser;
portKeyString += L"\\Device Parameters\\";

//If the portkey string is in the registry, then go ahead and open the portname
if (ERROR_SUCCESS == RegOpenKeyEx(tmpSubKey, portKeyString, 0, KEY_READ,

&tmpPortKey))
{

// CP2101/2/3/4
// This will only work for single interface devices, if it fails

AN197

8 Rev. 0.9

// we then look to see if it is a multi interface device
if (ERROR_SUCCESS == RegQueryValueEx(tmpPortKey, L"PortName", NULL, &valtype,

(unsigned char *)portString, &length))
{

// When we obtain this key, it will be in string format of
// "COMXX" where XX is the port. Simply make the first three
// elements of the string 0, and call the atoi function to obtain
// the number of the port.
portString[0] = '0';
portString[1] = '0';
portString[2] = '0';
portNum = _wtoi(portString);

}
else
{

//Close the original port key
RegCloseKey(tmpPortKey);

// Reset our port key string to not include device paramaters
portKeyString = L"Vid_";
_itow_s((int)vid, tmpPortString, 10, 16);
portKeyString += tmpPortString;
portKeyString += L"&Pid_";
_itow_s((int)pid, tmpPortString, 10, 16);
portKeyString += tmpPortString;
portKeyString += L"\\";
portKeyString += ser;

//If the portkey string is in the registry, then get the parent ID to start
looking at

//the multi interface devices
if (ERROR_SUCCESS == RegOpenKeyEx(tmpSubKey, portKeyString, 0, KEY_READ,

&tmpPortKey))
{
if (ERROR_SUCCESS == RegQueryValueEx(tmpPortKey, L"ParentIdPrefix", NULL,

&valtype, (unsigned char *)parentIdString, &length))
{
//Close the original port key, reopen the multi interface
//devices
RegCloseKey(tmpPortKey);

// Reset our port key string to not include device paramaters and
// the parent ID string, as well as interface info
portKeyString = L"Vid_";
_itow_s((int)vid, tmpPortString, 10, 16);
portKeyString += tmpPortString;
portKeyString += L"&Pid_";
_itow_s((int)pid, tmpPortString, 10, 16);
portKeyString += tmpPortString;
portKeyString += L"&MI_";
_itow_s((int)ifc, tmpPortString, 10, 16);
if (ifc <= 0x0F)
{
portKeyString += L"0";
}
portKeyString += tmpPortString;
portKeyString += L"\\";
portKeyString += parentIdString;
portKeyString += L"&00";

AN197

Rev. 0.9 9

if (ifc <= 0x0F)
{
portKeyString += L"0";
}
portKeyString += tmpPortString;
portKeyString += "\\Device Parameters\\";

if (ERROR_SUCCESS == RegOpenKeyEx(tmpSubKey, portKeyString, 0, KEY_READ,
&tmpPortKey))

{
if (ERROR_SUCCESS == RegQueryValueEx(tmpPortKey, L"PortName", NULL, &valtype,

(unsigned char *)portString, &length))
{
// When we obtain this key, it will be in string format of
// "COMXX" where XX is the port. Simply make the first three
// elements of the string 0, and call the atoi function to obtain
// the number of the port.
portString[0] = '0';
portString[1] = '0';
portString[2] = '0';
portNum = _wtoi(portString);
}
}
}
}

}
//Make sure to close all open keys for cleanup
RegCloseKey(tmpPortKey);

}

RegCloseKey(tmpSubKey);
}
RegCloseKey(tmpKey);

}
RegCloseKey(HKEY_LOCAL_MACHINE);

delete portString;
delete parentIdString;

// Return the number of the port the device is connected too
return portNum;

}

AN197

10 Rev. 0.9

7.2. Sample Program to Retrieve a CP210x COM Port
Included in the AN197SW.zip is a directory named "CP210xPortNumExample" that contains the source code and
executables for a Visual Studio project that makes use of these functions. In the program, the number of CP210x
devices are found and then for each one a port number is retrieved for it and listed in the edit box. (This program
also makes use of the CP210xManufacturing.DLL to find the VID, PID, and serial number on a device. The use of
this DLL is defined in more detail in "AN144: CP21xx Device Customization Guide".)

AN197

Rev. 0.9 11

8. Application Design Notes

The functions used in section 3., section 4., and section 5. are Windows COMM API functions. The examples
provided are just samples of the recommended way of dealing with serial communication. For more specific
information on these functions, see the MSDN website at: http://msdn.microsoft.com/library/default.asp.

It should also be noted that the SetCommState() function does not save the settings between opening and closing
the COM port. As stated before, it is good practice to get the current settings after the COM port is opened, and
then restore them before it is closed.

All of the functions here will return an error code. It is a good idea to nest these functions in order to catch errors if
they occur by using the GetLastError() function. This will also solve any surprise removal problems by allowing the
discovery of an invalid handle to be found and dealt with. The example application (CP210xSerialTest) has several
cases that will detect surprise removal. In this example, there are checks on every function to make sure that the
return code is true. If it is not, then it will display where the error occurred in the output window. As long as correct
and supported settings are passed to the functions they should execute normally. Most failures can occur from
having an INVALID_HANDLE_VALUE, however, the handles must be set to this value after a surprise removal
occurs.

Because regular COM ports will always be visible, then data can always be written to them successfully, even if
there is no way to read it. However, because the CP210x is a virtual COM port, if the device is removed, then the
handle that it uses becomes invalid when trying to write to it. If for some reason the CP210x device is unplugged
the write will fail and ERROR_OPERATION_ABORTED will be returned by GetLastError(). When this happens, the
handle needs to be closed and then set to INVALID_HANDLE_VALUE. Alternatively, a regular COM port can
always be read from, but if there is no data then it will time out. When using the CP210x as the virtual COM port
and it is removed before a read occurs, then the read will fail and ERROR_ACCESS_DENIED will be returned by
GetLastError(). Again when this happens, the handle needs to be closed and then set to
INVALID_HANDLE_VALUE.

9. References

MSDN - use this to search for specific Windows API functions

http://msdn.microsoft.com/

Serial Communication Reference

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnfiles/html/msdn_serial.asp

Communication Resource Reference

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/devio/base/communications_resources.asp

http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/library/default.asp
http://msdn.microsoft.com/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnfiles/html/msdn_serial.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/devio/base/communications_resources.asp

AN197

12 Rev. 0.9

DOCUMENT CHANGE LIST

Revision 0.3 to Revision 0.4
 Updated "7.2. Sample Program to Retrieve a

CP210x COM Port" on page 10.

Revision 0.4 to Revision 0.5
 Added CP2103 to Relevant Devices on page 1.

Revision 0.5 to Revision 0.6
 Updated XP/2000 references to include Server

2003/Vista.

 Updated WinXP/2000 key listing in section "7.
Discovering CP210x COM Port" on page 6.

 Updated code in section "7.1. Windows XP/2000/
Server 2003/Vista/7" on page 7.

Revision 0.6 to Revision 0.7
 Corrected registry paths in "7. Discovering CP210x

COM Port" on page 6.

Revision 0.7 to Revision 0.8
 Added CP2104/5 to Relevant Devices.

 Updated GetPortNum function and added support
for Windows 7 in Section 7.

 Removed support for Windows 98.

Revision 0.8 to Revision 0.9
 Added CP2108 to Relevant Devices list.

AN197

Rev. 0.9 13

NOTES:

AN197

14 Rev. 0.9

CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032

Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

https://www.silabs.com/support/pages/contacttechnicalsupport.aspx

	1. Introduction
	2. Opening a COM Port
	3. Preparing an Open COM Port for Data Transmission
	3.1. Purging the COM Port
	3.2. Saving the COM Port's Original State
	3.3. Setting up a DCB Structure to Set the New COM State
	3.3.1. Baud Rate
	3.3.2. Parity
	3.3.3. Byte Size
	3.3.4. Stop Bits

	4. Transmitting Data Across the COM Port
	4.1. Writing Data

	5. Closing the COM Port
	6. Sample program to Demonstrate Serial Communications
	7. Discovering CP210x COM Port
	8. Application Design Notes
	9. References
	Document Change List
	Contact Information

