
KIT 102. SERVO-MOTOR DRIVER

Servo motors are used in radio-controlled models (cars,
planes), robotics, theme park special effects, test
equipment, industrial automation. At the hobbyist end of
the market they are small, compact and relatively
inexpensive at around $US20. The motors themselves are
black boxes which contain a motor, gearbox and decoder
electronics. Three wires go into the box; 5V, ground and
signal. A short shaft comes out of the motor which usually
has a circular interface plate attached to it Most servos will
rotate through about 100 degrees in less than a second
according to the signal input. This Kit will control up to 4
servo motors simultaneously.

ASSEMBLY
Check the components in the kit against the Components
List. Some of the resistors stand up on the board. Make
sure to get the electrolytic capacitor and the IC1 around the
correct way.

To complete the kit between one and four 5K - 10K
potentiometers are required to produce the input signal.
Connect each pot as a voltage divider with the center pin
going to the signal input. Servo motors are required. They
have not been included in this kit because users will
usually have their own particular servos they wish to
control.

CIRCUIT DESCRIPTION
All the work controlling the servos is done in the
preprogrammed PIC micro-controller (uC). As such the kit
provides a text-book example of how a uC can replace a
handfull of IC’s & other glue chips. Everything is done in
software. Connect a 5V power supply capable of delivering
an amp.

The input signals are between 0 - 5V delivered by
connecting up the potentiometers as voltage dividers.
Inside the PIC an AD converter (multiplexed when there is
more than one input signal) changes the voltage signal into
the Pulse Code Modulation system used by servo motors.
This signal is a 5V pulse between 1 and 2 msec long
repeated 50 times per second. That is, a 20msec frame rate.
The width of the pulse determines the position of the
server. Most servos will move to the center of their travel
when they receive a 1.5msec pulse. One extreme of
motion generally equates to a pulse width of 1.0msec; the
other extreme to 2.0msec with a smooth variation
throughout the range, and neutral at 1.5msec. The period
between the pulses is used to synchronise the receiver.

Servos are closed loop devices. They are constantly
comparing their position (proportional to the pulse width)
to their actual position (proportional to the signal voltage
input.) If there is a difference between the two the servos
electronics will turn the motor to adjust the difference
error. This also means that servos will resist forces which
try to change their position. When a servo is unpowered or
not receiving positioning pulses the output shaft can be
easily turned by hand.

; PROGRAM: SERVO.SRC

; This program generates pulse width modulation from sampled voltages.
; The PIC 16C71 has four inbuilt ADC converters (actually one
; ADC which is multiplexed) which are set up in this case to read 0 - 5V
; as the binary values 0 - 255.
; The ADC results are loaded into a delay routine which is implemented
; using the real time clock counter (RTCC). Basically the RTCC counts
; up from the loaded value until it reaches 255 and then rolls over to
; zero, triggering an interrupt.

; As the program is intended to drive servos, there is also a fixed delay
; of about 0.8 milliseconds included. The controller thus raises the
; appropriate output pin for 0.8 msec plus the variable delay and then
; drops it again. The maximum pulse width is about 2.2 msec.

; Note that the four ADC's sample and output one at a time. Once all four
; have had a turn the controller is put to SLEEP which shuts everything
; down except the watch dog timer (WDT). When the WDT times
; out (in about 18 msec) it completely resets the controller and
; the process starts all over. Thus, in the case of all 0V inputs, the
; cycle takes 4*0.8+18 equals about 21 msec to complete.

; The following constants set the ADC clock source/ speed. Uncomment
one.

;AD_clk = 0 ;PIC oscillator period x 2 (<= 1 MHz).
;AD_clk = 64 ;PIC oscillator period x 8 (<= 4 MHz).
;AD_clk = 128 ;PIC oscillator period x 32 (<= 16 MHz)
AD_clk = 192 ;Independent RC oscillator, 2-6 us.

; The following constants select a pin for ADC input. Uncomment one.

AD_ch = 0 ;ADC channel 0 (Ain0, pin 17).
;AD_ch = 8 ;ADC channel 1 (Ain1, pin 18).
;AD_ch = 16 ;ADC channel 2 (Ain0, pin 1).
;AD_ch = 24 ;ADC channel 3 (Ain0, pin 2).
AD_ctl = AD_clk | AD_ch ;Logical OR.

; The following constants determine which pins will be usable by the
ADC
; & whether Vdd or ra.3 will serve as the voltage reference. Uncomment
one.

AD_ref = 0 ;ra.0 through 3 usable, Vdd reference.
;AD_ref = 1 ;ra.0 through 3 usable,ra.3 reference.
;AD_ref = 2 ;ra.0/1 usable, Vdd reference.
;AD_ref = 3 ;All unusable--digital inputs only.

device
pic16c71,hs_osc,wdt_on,pwrt_off,protect_on

id 'ADC1'

counter1 = 10h
counter2 = 11h
integer1 = 12h
integer2 = 13h

Kit 102 Components
Resistors 1/4W, 5%:
470K...R1 to R5.................5
470R ...R6 to R9.................4
0.1uF (104)C4...........................1
15pF ceramic capacitor...................C1 C22
2200uF/16V electrolytic capacitor .C3...........................1
3.579MHz crystalXTAL.....................1
Programmed PIC16C71-04/PIC11
18 pin IC socket..............................1
2 pole terminal block1
K102 PCB1

Potentiometers & servo motors not supplied.

KIT 102. SERVO-MOTOR DRIVER

dummy = 14h
flag = 15h
servo0 = rb.5
servo1 = rb.4
servo2 = rb.3
servo3 = rb.2

org 0
jmp start

org 4 ;Interrupt jumps here
clrb RTIF
setb flag.0
reti

start mov !ra, #255 ;Set ra to input.
mov !rb, #0 ;Set rb to output.
clr rb ;Clear port rb
mov dummy,#255
mov intcon, #0 ;Turn interrupts off.
mov adcon0,#AD_ctl ;Set AD clock and

channel.
setb rp0 ;Enable register page 1.
mov adcon1,#AD_ref ;Set usable pins, Vref.
mov option,#00001000b ;WDT on, no prescale
clrb rp0 ;Back to register page 0.
setb adon ;Apply power to ADC.

setb go_done ;Start conversion.
not_done snb go_done ;Poll for 0 (done).

jmp not_done ;If 1, poll again.
mov counter2,adres ;Move ADC result into

counter.
mov integer1,#3 ;Offset constant
mov integer2,#5 ;ADC multiplier
setb servo0 ;Output pulse to servo 0
call delay
clrb servo0

call pause ;ADC settling delay
clrb rp0 ;Ensure reg page 0
clrb chs1 ;Select channel 1
setb chs0 ; Ain 1
mov dummy,#255 ;Reload dummy variable
clrb adres ;Make sure
setb go_done ;Start conversion.

not_done1 snb go_done ;Poll for 0 (done).
jmp not_done1 ;If 1, poll again.
mov counter2,adres ;Move ADC result into

counter.
mov integer1,#3 ;Offset constant
mov integer2,#5 ;ADC multiplier
setb servo1 ;Output pulse to servo 1
call delay
clrb servo1

call pause
clrb rp0 ;Ensure reg page 0
setb chs1 ;Select channel 2
clrb chs0 ; Ain 2
mov dummy,#255
clr adres
setb go_done ;Start conversion.

not_done2 snb go_done ;Poll for 0 (done).
jmp not_done2 ;If 1, poll again.
mov counter2,adres ;Move ADC result into

counter.
mov integer1,#3 ;Offset constant
mov integer2,#5 ;ADC multiplier
setb servo2 ;Output pulse to servo 2
call delay
clrb servo2

call pause
clrb rp0 ;Ensure reg page 0

setb chs1 ;Select channel 3
setb chs0 ; Ain 3
mov dummy,#255
clr adres
setb go_done ;Start conversion.

not_done3 snb go_done ;Poll for 0 (done).
jmp not_done3 ;If 1, poll again.
mov counter2,adres ;Move ADC result into

counter.
mov integer1,#3 ;Offset constant
mov integer2,#5 ;ADC multiplier
setb servo3 ;Output pulse to servo 3
call delay
clrb servo3

sleep
jmp start ;Time out after 18 msec

; The number of loops this delay routine makes is dependent on the result
of
; the AD conversion. The higher the voltage, the longer the delay.

delay clrb rp0 ;Page 0
mov intcon,#10100000b ;Enable RTCC

interrupt

;****************** Fixed delay part of routine ****************

delay1 mov RTCC,#55 ;Fixed delay
wait1 jnb flag.0,wait1 ; of 200 till interrupt

clrb flag.0 ;Flag set on interrupt
djnz integer1,delay1 ;Three times through

;****************** Variable delay part of routine **************

sub dummy,counter2 ;RTCC counts UP!
load mov RTCC,dummy ;Load RTCC
wait2 jnb flag.0,wait2 ;Note infinite loop

clrb flag.0
djnz integer2,load ;Five times through

mov intcon,#0 ;Disable interrupt
ret

pause mov counter1,#120 ;Adds a short settling
settle djnz counter1,settle ; time to the
ADC

ret

**
*

KIT 102. SERVO-MOTOR DRIVER

